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Abstract— People form beliefs about intentions and prefer-
ences of robots as they observe robot movement. However,
robots rarely optimize their movement to allow people to easily
determine state preferences. In this work, we define critical
points along robot trajectories that convey information about
state preferences: inflection points are changes in direction
and compromise points are the relative proportion of preferred
states to non-preferred ones. We contribute an approach for
automatically generating trajectory demonstrations with spec-
ified critical points, and test observers’ abilities to understand
and generalize our robot’s preferences based on our generated
demonstrations. Our results show that inflection points helped
participants understand state preference ordering and allowed
them to more accurately predict paths through new envi-
ronments, while compromise points hindered understanding.
We conclude that robots should evaluate their trajectories for
critical points to increase human observer understanding.

I. INTRODUCTION

As robots perform tasks in human-occupied environments,
people who observe them form beliefs about their behav-
iors [1]. Without insight into the robot’s objective function
or other information about how the robot behaves, people
must derive their expectations from only the robot’s motion
within the context of the environment. These beliefs guide
peoples’ understandings and expectations of the robots as
well as their interactions. If a person cannot understand why
a robot planned its trajectory, even a successful one, they may
not be able to predict its trajectory in a new environment.

Prior work has focused on using robot motion to effec-
tively convey robot capabilities and goals [2, 3]. In contrast,
we focus on using robot motion to convey its objective
function and show that it prefers to navigate through states
with particular features. Consider the trajectory shown in
Fig. 1a. It appears that the robot does its best to avoid rocks
while navigating to the goal, implying it has a preference
for traversing grassy states over rocky states. However, this
trajectory could have also been generated by a robot with an
objective function that has no preference for either terrain
type if it arbitrarily chose where to turn. Similarly, a person
observing the robot in Fig. 1b may be unclear about whether
the robot has no terrain preference or a strong preference
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Fig. 1: Many possible objective functions could generate these trajectories.

for grass. A person who does not understand the robot’s
objective function could be confused in a new environment
when it does not plan a new trajectory that matches their
expectations. We are interested in producing robot motion
trajectories that help people understand the robot’s feature
preferences and that improve their ability to generalize that
behavior to new environments.

Based on the observation that people assign rational mean-
ing to agent actions [1, 4, 5] we define two types of critical
points in a trajectory – inflection points and compromise
points – as points that are information-rich and convey infor-
mation about the relationship between the planned trajectory
and the features in the environment. Fig. 1a is an extreme
example of how inflection points (i.e., changes in direction)
may lead an observer to infer a preference for grass because
the trajectory traverses only that terrain feature. The single
rock compromise point in Fig. 1b may similarly lead an
observer to believe there is no preference for grass over
rocks when in fact all alternative paths have more rocks and
therefore a lower overall value.

Our goal is to determine, in detail, the roles these kinds of
points play in trajectories that lead to a good understanding
of robot behavior. Towards this, we conducted a large-scale
study to systematically examine how varying the critical
points in trajectories affects peoples’ understandings of robot
behaviors. We generated trajectories through synthetic envi-
ronments according to different robot behaviors and showed
them to people via Amazon Mechanical Turk (AMT). We
conducted a within-subjects study in which we varied the
parameterizations of the robot’s reward function as well
as the combinations of critical points along each trajectory
and asked people to specify their understandings as well as
generalize new plans in different environments. We show
that people understand and can generalize the robot’s terrain
preferences more accurately as the number of inflection
points increases and compromise points decreases within
trajectories. However, when a robot has no preference for
terrain types, the addition of either type of critical point
within a trajectory reduces a participant’s understanding.

We conclude that our critical points in trajectories do
provide observers more information about a robot’s state
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preferences. A robot that can take these points into consid-
eration while planning its trajectories can reduce observer
uncertainty about its behavior while still acting optimally.

II. RELATED WORK

The rationality principle states that people expect inten-
tional agents, including robots, to choose actions to achieve
their desires most efficiently [1, 4, 5]. However, humans
often make errors in social judgment as they tend to at-
tribute biased causes to others’ behaviors (over-attribution
effect) [6]. Towards the goal of helping people accurately
understand robot behavior, prior research has focused on two
areas: 1) autonomously recognizing planned behavior and 2)
demonstrating plans to humans.

The goal of plan recognition is to passively infer agent
goals and plans by partially observing agent actions [7].
Assuming all the possible plans are given by a plan library,
some approaches are grammar-based parsing algorithms [8,
9] and Bayesian network inference algorithms [10, 11]. A
more generative approach is to estimate agent goals without
plan libraries through building agent decision-making mod-
els [7, 12–14]. Rather than observing actions to recognize
plans, the goal of research in reward elicitation is to query
human users for the utilities of actions that are performed
to learn optimization functions [15]. A common approach is
to ask users directly about their preferences to bound the
estimations of their utility functions [15–17]. An indirect
approach is to infer user reward function through observing
user policy in response to incentives [18, 19]. In contrast
to the automatic approaches in which a learner is trying to
extract a human’s plan or reward function, we are interested
in changing the actions of a robot to allow a human to more
easily learn the robot’s reward function.

A growing area of research is focusing on ways to plan
robot motion that is more interpretable or understandable to
humans. Nikolaidis et al. have contributed action planning
algorithms that allow their robot to reveal its capabilities
adaptively through a game theoretic model of human expec-
tations [2]. Other work has also developed expressive robotic
lifting motions to help humans understand the weights of
the objects that robots are manipulating [20, 21]. The ability
of a person to recognize a robot’s goals by observing its
action execution also improves robot legibility [3, 22], pre-
dictability [23], acceptance [24], and naturalness [25], which
are important for a human’s recognition of robot tasks [26]
and human-robot collaboration [27, 28]. However, the prior
work aims to make current executed behavior and goals more
understandable and does not focus on helping people more
easily predict future actions and generalize current behavior
to new environments.

Our approach to making robot behavior more understand-
able is to communicate the robot’s preferences for different
states or state features (its reward function) via its actions.
Inspired by the idea that people attribute decision-making at
critical points in behaviors to rationality [16], we propose
critical points along a trajectory that could be more informa-
tive than others about the robot’s preferences. We analyze

how these critical points in a trajectory affect a person’s
understanding of the robot’s reward function by systemat-
ically creating demonstration trajectories with particular sets
of points. The demonstrations (either in simulations like ours
or real robots like [29]) motivate people to observe new robot
behaviors and infer the robot’s preferences [18]. For each
demonstration, we measured a person’s ability to define the
reward function and also generalize their observed trajectory
to new environments.

III. PROBLEM FORMULATION

We formulate our robots’ behaviors as a standard Markov
Decision Process which is a tuple of the form: {S,A, T , R}.

This includes a set of world states s ∈ S with a single
absorbing goal state sg ∈ S and a set of robot actions a ∈ A.
The MDP has a deterministic state transition function T :
S×A → S and an immediate reward function R : S → R+.
A robot behaves according to a deterministic policy π : S →
A. The optimal policy is denoted as π∗ and describes the
policy that maximizes the overall reward.

A trajectory ξ(s0|π) ∈ Ξ is defined as a sequence of states
[s0, s1, s2, ..., sg] where ∀st ∈ ξ(s0|π), T (st−1, π(st−1)) =
st. The total reward of ξ is Rξ(ξ) =

∑
st∈ξ R(st). An

optimal trajectory ξ∗ is yielded by following π∗.
To ensure there are no cycles in a trajectory, there is one

and only one s ∈ S such that R(s) ≥ 0.

A. Experimental Setup

As an example domain, we consider a grid world repre-
sentation of a park which has a single terrain feature such
as grass or rock assigned to each state (tile) on the grid.
• State s ∈ S is defined as s = (x, y)
• Action a is a 4-connected movement where a ∈ A =
{→, ↑, ↓,←}

• We define φ : S → N3
+ as a mapping from states to

features. φ(s) = [1goal(s),1grass(s),1rock(s)] ∈ {0, 1}3
subject to ‖φ(s)‖ = 1, where each 1(s) is an indicator
function (e.g., 1grass(s) = 1 if the tile type at s is grass
and 1grass(s) = 0 otherwise)

• We define T as a transition mapping with deterministic
4-connected movements within the gridworld.

• θ ∈ R3 are the weights for the feature vector φ.
The reward for a state s with weights θ is given by
R(θ, s) = θTφ(s) ∈ R.

• When deriving the optimal policy, we break action ties
with the ordering [→, ↑, ↓,←].

IV. CRITICAL POINTS OF TRAJECTORIES

Depending on a robot’s functional objective, the tra-
jectory it follows can vary significantly. We characterize
the information-rich states and actions within a trajectory
as critical points. Based on the rationality principle, we
focus on two types of critical points – inflection points in
which people assign meaning to changing directions and
compromise points in which a robot traverses over states
with different features. Although this set of characteristics is
not exhaustive, we believe it provides an effective starting
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Fig. 2: (a) generating 1 inflection point (red dot) by placing rock tiles at state 1 and 2 (b) 4 inflection points (red dots) (c) generating 1 compromise point
(orange dot) by building a frontier (orange line segments) (d) 4 compromise points (orange dots)

point in analyzing trajectories. We will demonstrate that
critical points can be beneficial in guiding the observer’s
understanding of robot behavior, or they can be detrimental
to an observer’s understanding, confounding their beliefs and
leading to misinterpretation.

A. Inflection Points

Inflection points are defined as st ∈ ξ(s0|π) where the
robot changes its direction. In other words, inflection points
are all points at which the robot’s action is not identical to its
prior action (i.e., π(st−1) 6= π(st)). In Fig. 2a, an inflection
point is indicated by the red dot where the robot moves up.
This change of behavior gives people information about the
robot’s aversion towards the rock tile annotated as 1. In our
park environment, inflection points come in pairs (e.g., the
two inflection points in Fig. 2a) because the robot typically
resumes moving rightward after changing direction.

B. Compromise Points

Compromise points are defined as states st ∈ ξ∗(s0|π∗)
in which the myopic reward of entering st is not the
maximum obtainable from st−1, yet the total reward for
the trajectory is maximized. In particular, ∃ at−1 ∈
A, at−1 6= π∗(st−1), T (st−1, at−1) = s′t. s.t. R(s′t) >
R(st), but Rξ(ξ∗(s′t|π∗)) < Rξ(ξ

∗(st|π∗)).
The trajectory in Fig. 2c contains one compromise point

(orange dot). To reach the goal, the robot must traverse a
terrain feature (e.g. rock) which incurs a higher cost than
another possible terrain feature (grass) accessible from the
previous state. Any attempt to move around the rock frontier
would result in lower total trajectory reward compared to the
straight path over the one compromise point.

V. GENERATING DEMONSTRATIONS

We develop a method for synthesizing trajectories through
environments that demonstrate the robot’s reward function
R(θ, s) by changing φ by iteratively inserting inflection and
compromise points into the trajectory ξ∗.

A. Inflection Points

To create an inflection point at si ∈ ξ∗(s0|π∗), we can
decrease the reward of si+1 which alters π∗(si) to avoid
si+1. In Fig. 2a, grass is preferred and has lower cost than
rock. To create an inflection point at si indicated as the red
dot, we place a rock terrain tile at si+1 annotated as state 1.

One side effect of changing state 1 is that it might
introduce multiple optimal policies yielding multiple optimal
trajectories. The ambiguity of multiple optimal trajectories

(or policies) can mislead people as it requires more complex
reasoning to identify. One solution is to change some states
to make all but one of the optimal trajectories sub-optimal.
We treat this as a set cover problem. Universe U is the set of
all the available optimal trajectories U = {ξ|ξ = ξ∗ ← π∗}.
∀s ∈ ξ ∈ U , we define subset(s) ⊂ U to include all
the optimal trajectories that go through s (i.e., subset(s) =
{ξ|s ∈ ξ ∈ U}). The family set contains all the subset(s)
(i.e., set = {subset(s)|s ∈ ξ ∈ U} s.t.

⋃
ss∈set ss = U ).

Our goal is to find the minimum number of states that all
but one of the optimal paths include (i.e., to find the minimal
set cover subject to

⋃
cc∈cover cc = U\ξ∗∗ where ξ∗∗ ∈ U

is the only path s.t. ∀cc ∈ cover, ξ∗∗ /∈ cc). ∀subset(s) ∈
cover, we can reduce R(s) to make all the ξ ∈ subset(s)
sub-optimal and leave ξ∗∗ the only optimal trajectory.

In Fig. 2a, there are 9 extra optimal trajectories available
after changing states 1 (yellow arrows). By placing a rock
terrain at state 2, we could prevent the robot from moving
downwards before reaching the red dot and make the trajec-
tory indicated by black dots the only optimal trajectory. We
generate 4 inflection points accordingly as shown in Fig. 2b.

B. Compromise Points

Similar to generating an inflection point, to generate a
compromise point at si ∈ ξ∗(s0|π∗), we could decrease the
reward of si+1 s.t. R(si+1) < Rmax. But the difference is
that now we want robots to keep π∗(si) and head to si+1

inevitably. Hence, we could decrease the rewards of a set
of states in a neighboring area close to si+1 to make it too
costly for robots to detour around si+1. We could initiate the
area as one state and iteratively increase its size until the new
optimal trajectory passes through si+1. In each iteration, we
could grow the area by making all the optimal trajectories
which do not go through si+1 sub-optimal using the same
technique we introduced in Sec. V-A.

In Fig. 2c, to create a compromise point at si (orange
dot), we can build a frontier of states filled with rock terrain
from top to bottom across the entire map (orange frontier).
This frontier with a low reward will force the robot to pass
through si+1 (the black dot on the right next to the orange
dot). In our implementation, we use cubic Bezier curves [30]
randomly generated through De Casteljau’s Algorithm [31]
to represent natural-looking frontiers. We generate four com-
promise points accordingly as shown in Fig. 2d.

C. Extra Points

We uniformly distribute different φ’s across our demon-
stration maps to so that all the maps are consistent with
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each other regarding the frequency of each feature. In our
implementation, we ensure that each map contains 50% rocks
and 50% grass adding complementary rock tiles to grass-
dominant maps and vice versa. To make maps look natural,
we place terrain types based on 2D Perlin noise [32–34].
Final maps and trajectories are shown in Fig. 3.

VI. EMPIRICAL EVALUATION

We ran a study to test the effects of trajectories with
different critical points on human understanding of robot
terrain preferences. We presented participants with 16 dif-
ferent maps of “parks” with rock and grass terrain features,
containing trajectories starting from the left and traversing
to the right side of the park. We manipulated the number
of critical points within trajectories as well as the actual
terrain preference demonstrated in each map and measured
each participant’s ability to predict the robot’s preferences in
a within-subject study design.

A. Independent Variables

We tested six terrain preference conditions and 10 no-
preference conditions. The six preference conditions com-
prise all combinations of {0,2,4} inflection and {0,4} com-
promise points. The no-preference conditions are combina-
tions of {0,2,4} inflection points, {0,4} compromise points,
and {same, different} inflection point configurations1.
Terrain Preferences. We compared trajectories through
maps when there was a terrain feature preference versus
when there was no preference between terrain features. We
randomly selected half of the terrain preference conditions
to prefer rock and half to prefer grass. Preferred, avoided,
and goal state features were assigned rewards of −1, −10,
and 100 respectively based on the map size.
Inflection Points. Each demonstration trajectory had 0, 2,
or 4 inflection points. Locations of the inflection points were
randomly chosen along the path.
Compromise Points. We set the number of compromise
points in each demonstration trajectory to be one of two
values. When the reward function had preferences, these
two values were {0, 4}. We were interested in observ-
ing the differences between having no compromise points
versus having several points where the robot must ’‘make
a compromise” (which we chose to be 20% of the total
trajectory length). When the reward function had no prefer-
ences, compromises could not technically occur. Therefore,
we arbitrarily assigned a ’‘simulated” preference and then
divided the number of terrain features along the trajectory
in the two levels: {50-50, 20-80}. The former level resulted
in a trajectory where there was no preference illustrated by
compromise points. The latter resulted in a trajectory where
the robot simulated a compromise on 20% of the states.
Inflection Point Configuration. At each inflection point,
there is a ‘decision’ corresponding to the change in direction.
The robot’s direction switches from continuing onto one tile
(Fig. 4, B) to moving onto another tile (Fig. 4, C). We test

1When there are no inflection points, there are no inflection point
configurations, hence there are 10 ‘no preference’ maps instead of 12.

whether human understanding changes if the terrain types of
those tiles are the same (i.e., the robot chooses to turn from
one grass tile to another grass tile) or different (i.e., the robot
turns from a grass tile onto a rock tile). This condition is only
tested when there is no preference in the terrain type.

B. Response Types

Sliders. We included a slider for each terrain feature type
and labeled them {“Strongly Avoid”, “Slightly Avoid”,
“Neutral”, “Slightly Prefer”, “Strongly Prefer”}. We asked
participants to indicate the preference the robot had demon-
strated for each terrain type using the sliders. Participants
were free to place the sliders anywhere along the scale. We
mapped their slider placements to a value between [0, 1000],
where 0 corresponds to “Strongly Avoid”, 500 corresponds
to “Neutral”, and 1000 corresponds to “Strongly Prefer”.
Text Free-Response. Participants were asked to explain the
reasoning they believed the robot used as it planned its path
through the map. Due to space constraints, we do not present
the results from the free response.
Drawing Trajectories. Last, we presented the participants
with a new map (without a demonstration trajectory pre-
drawn on it) and asked them to draw the trajectory they
believed the robot would take if it were using the same rea-
soning to plan its new trajectory. Participants were required
to start at a predefined point and could add 4-connected
waypoints until reaching the goal position. Each map was
generated to ensure it had a single optimal trajectory with
respect to a fixed terrain preference. The maps were filled
50/50 with rock and grass tiles. In order to reduce the bias
in our test maps, each participant received a randomized test
map for each experimental condition. This measure allowed
us to test participants’ understanding of the robot’s behaviors
by comparing their drawn path to the optimal one.
Subjective Confidence. We asked participants to indicate
on a 5-point Likert scale how confident they were that the
trajectory they drew would be the one the robot would take.

C. Study Deployment

We recruited 90 participants via Amazon Mechanical Turk.
We used a within-subjects design where each subject was
shown the total 16 conditions (6+10) in the same order. This
order was pre-determined to ensure that no three consecutive
conditions had the same terrain preference, which allowed
us to avoid users inferring incorrectly based on coincidental
patterns. Participants were given no prior information about
critical points or how the maps were generated.

VII. RESULTS

A. Dependent Variables

We used three measures of accuracy in understanding
robot preferences based on the drawn trajectories, sliders,
and subjective ratings of confidence.

The optimality ratio = | total cost of optimal trajectory
total cost of drawn trajectory | ∈ (0, 1].

As people understand the robot reward function more accu-
rately, optimality ratio increases.
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(a) Prefer grass, 0 infl, 0 comp (b) Prefer grass, 2 infl, 0 comp (c) Prefer grass, 2 infl, 4 comp (d) Prefer grass, 4 infl, 4 comp

(e) No pref., 0 infl, 0 comp (f) No pref., 0 infl, 4 comp (g) No pref., 2 infl, different, 0 comp (h) No pref., 2 infl, same, 0 comp

Fig. 3: Robot preference type, number of inflection points (red dots), inflection point configuration (“different” = red dots with black circles, “same” = red
dots with blue circles), number of compromise points (orange dots) for demonstration examples

Fig. 4: (left) an inflection point with ‘same’ configuration (right) an
inflection point with ‘different’ configuration

We assume that people use the distance between the grass
and rock slider placements to indicate their certainty about
inferring the robot preferences. Each slider could have a
value [0, 1000]. We map the distance between the grass
and rock slider placements to preference range ∈ [0, 2000].
A value of 0 corresponds to the user inferring the true
preference between the grass and rock terrains with a low
certainty while a value of 2000 corresponds to the user
inferring with a high certainty, regardless of what the robot
prefers.

We use subjective confidence ∈ {1, 2, 3, 4, 5} to represent
the user’s self-reported confidence in understanding robot
reasoning, with higher values indicating more confidence.

B. Hypotheses

H1 Preference demonstrations: increasing the number
of inflection points will increase optimality ratio,
preference range, and subjective confidence.

H2 Preference demonstrations: increasing the number
of compromise points will decrease optimality ra-
tio, preference range, and subjective confidence.

H3 No preference demonstration: increasing the num-
ber of inflection points will decrease optimality
ratio, preference range, and subjective confidence.

H4 No preference demonstration: increasing the num-
ber of compromise points will decrease optimality
ratio, preference range, and subjective confidence.

H5 No preference demonstration: the optimality ratio,
preference range, and subjective confidence are
lower when each inflection point has a different
configuration than when each inflection point has
the same configuration.

C. Results
1) Preference: Optimality Ratio. We use a two-way

repeated measures ANOVA to find the effect of inflection

points and compromise points on optimality ratio (Table I).
The number of inflection points has a significant effect

on the optimality ratio (F (2, 178) = 46.159, p < 0.001).
Post hoc analysis with a Bonferroni adjustment reveals that
the optimality ratio is significantly increased from 0 to 2
(p < 0.001) and from 0 to 4 (p < 0.001), but not from 2 to
4 inflection points (p = 0.052), though it is close (Fig. 5a).
This suggests that inflection points help users understand
robot preferences. For example, it is easier for people to
understand that the robot prefers grass over rock terrains by
looking at Fig. 3b than Fig. 3a. Additionally, in these maps
there, is little benefit to demonstrating more than 2 inflection
points. For example, it is not much easier for people to
understand that the robot prefers grass over rock terrains by
looking at Fig. 3d than Fig. 3b although Fig. 3d has more
inflection points. The first part of H1 is supported.

The optimality ratio is significantly decreased from 0
to 4 compromise points (F (1, 89) = 74.476, p < 0.001)
(Fig. 5b). For example, it is less confusing for people to
understand that the robot prefers grass over rock by looking
at Fig. 3b than Fig. 3c. The first part of H2 is supported.

There is a significant interaction between the numbers
of inflection and compromise points on optimality ratio
(F (2, 178) = 5.291, p = 0.006). When there are no compro-
mise points, there is no significant difference between 2 and
4 inflection points (p = 0.730). However, when there are 4
compromise points, optimality ratio is significantly increased
from 2 to 4 inflection points (p = 0.001) (Fig. 5c). This
indicates that as the number of compromise points increases,
people need more inflection points to mitigate their confusion
about the compromise points. For example, people are more
certain about the robot prefers grass over rock terrains by
looking at Fig. 3d than Fig. 3c.
Preference Range. We used a two-way repeated measures
ANOVA to determine the effects of inflection points and
compromise points on preference range (Table I). The num-
ber of inflection points has a significant effect on preference
range (F (2, 178) = 65.759, p < 0.001). A post hoc analysis
with a Bonferroni adjustment reveals that the preference
range is significantly increased from 0 to 2 (p < 0.001)
and from 0 to 4 (p < 0.001), but not from 2 to 4
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the number of compromise points (f) the interaction between the numbers of inflection points and compromise points (g) inflection point configuration
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Fig. 7: When there is a preference, subjective confidence vs (a) the number of inflection points (b) the number of compromise points (c) the interaction
between the numbers of inflection points and compromise points. When there is no preference, subjective confidence vs (d) the number of inflection points
(e) the number of compromise points (f) the interaction between the numbers of inflection points and compromise points (g) inflection point configuration

(p = 0.385) inflection points (Fig. 6a). This suggests that
more inflection points lead to greater certainty about the
robot’s preference. Similar to optimality ratio, increasing
beyond 2 inflection points does not improve preference
range. The second part of H1 is supported. Preference range
is also significantly decreased from 0 to 4 compromise points
(F (1, 89) = 91.050, p < 0.001) (Fig. 6b). The second part
of H2 is supported. There are no other significant effects on
preference range.

Subjective Confidence. To measure the effect of inflection
and compromise points on the Likert scale responses for
subjective confidence, we ran a generalized ordinal logis-
tic model and estimated the model parameters through a
generalized estimating equation (GEE) with AR(1) covari-
ance structure (Table I). Subjective confidence significantly
increased from 0 to 2 (p = 0.009) and from 0 to 4 (p =
0.001), but not from 2 to 4 (p = 0.907) inflection points
(Fig. 7a). This suggests that inflection points help people feel
more confident about their evaluations, but that increasing
beyond 2 inflection points does not necessarily lead to more
confidence. The third part of H1 is supported. Subjective
confidence is significantly increased from 0 to 4 compromise
points (p = 0.009) (Fig. 7b). This suggests that path entropy

decreases users’ feelings of confidence in their evaluations.
Interestingly, the third part of H2 is not supported. There are
no other significant effects for subjective confidence.

2) No Preference: Analysis for no preference maps fol-
lows the analysis for preference maps above. Results for
inflection point configuration are only available for demon-
strations with 2 or 4 inflection points, since 0 inflection points
mean there cannot be inflection point configurations.
Optimality Ratio. We conducted a three-way repeated
measures ANOVA to determine the effect of inflection points,
compromise points, and inflection point configuration on
optimality ratio (Table II).

The number of inflection points significant affects optimal-
ity ratio (F (2, 178) = 42.050, p < 0.001). Post hoc analysis
with a Bonferroni adjustment reveals that optimality ratio is
significantly decreased from 0 to 2 (p < 0.001), from 0 to 4
(p < 0.001), and from 2 to 4 (p < 0.001) inflection points
(Fig. 5d). This suggests that people’s ability to identify the
robot’s true preferences continues to decrease as inflection
points are added. For example, it is less confusing for people
to understand that the robot has no preference by looking at
Fig. 3e than Fig. 3g. The first part of H3 is supported.

Optimality ratio is significantly decreased from 0 to 4 com-
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promise points (F (1, 89) = 62.649, p < 0.001) (Fig. 5e).
For example, it is less confusing for people to understand
that the robot has no preference from Fig. 3e than Fig. 3f.
The first part of H4 is supported.

There is a significant interaction between the numbers
of inflection and compromise points on optimality ratio,
F (2, 178) = 12.652, p < 0.001. When the number of com-
promise points is high, the optimality ratio is significantly de-
creased from 2 to 4 inflection points (p < 0.001), while when
number of compromise points is low, there is no significant
difference (p = 0.883) (Fig. 5f). This indicates that when
there are many compromise points, more inflection points
exacerbates the detrimental effect of compromise points on
optimality ratio, while when the number of compromise
points is low, the detrimental effect is gone.

Optimality ratio is significantly higher when inflection
points have the “same” configuration than when they have
a “different” configuration (F (1, 89) = 12.793, p = 0.001)
(Fig. 5g). This indicates that for maps without a preference,
inflection points that move to the same type of terrain better
reveal the robot’s true (lack of) preference. For example, it is
less confusing for people to understand that the robot has no
preference by looking at Fig. 3h than Fig. 3g. The first part
of H5 is supported. No other significant results were found.
Preference Range. We use a three-way repeated mea-
sures ANOVA to determine the effect of the number of
inflection points, compromise points, and inflection point
configuration on preference range (Table III). The number
of inflection points has a significant effect on preference
range (F (2, 178) = 67.728, p < 0.001). Post hoc analysis
with a Bonferroni adjustment reveals that preference range
is significantly decreased from 0 to 2 (p < 0.001) and from
0 to 4 (p < 0.001), but not from 2 to 4 inflection points
(p = 0.069) (Fig. 6d). The second part of H3 is supported.
Preference range is also significantly decreased from 0 to
4 compromise points (F (1, 89) = 181.118, p < 0.001)
(Fig. 6e). The second part of H4 is supported.

There is a significant interaction between the numbers of
inflection points and compromise points on preference range
(F (2, 178) = 18.848, p < 0.001). When there are 4 com-
promise points, preference range is significantly decreased
from 2 to 4 inflection points (p = 0.003), while when there
are 0 compromise points, there is no significant difference
(p = 0.611) (Fig. 6f). This indicates that inflection points
have a detrimental effect on preference range only when they
are exacerbated by compromise points, but that without the
compromise points there is no detrimental effect.

Preference range was significantly decreased from “same”
to “different” inflection point configuration (F (1, 89) =
13.802, p < 0.001) (Fig. 6g). This indicates that for maps
without a preference, the preference range is lower when
all inflection points have the “different” configuration than
when the same number of inflection points have the “same”
configuration. The second part of H5 is supported. No other
significant differences are found.
Subjective Confidence. To determine the effect of inflec-
tion points, compromise points, and inflection point configu-

rations on subjective confidence, we conducted a generalized
ordinal logistic model and estimated the model parameters
through a generalized estimating equation (GEE) with AR(1)
covariance structure (Table IV). There is no significant
effect of inflection points on subjective confidence (Fig. 7d).
People are not significantly less confident about inferring
the robot reasoning when dealing with demonstrations with
more inflection points. The third part of H3 is not supported.
Subjective confidence is significantly decreased from 0 to 4
compromise points (p < 0.001) (Fig. 7e). People are less
confident about the robot’s reasoning when dealing with
demonstrations with more compromise points. The third
part of H4 is supported. There were no significant effects
of inflection point configuration on subjective confidence
(Fig. 7g). The third part of H5 is not supported.

VIII. DISCUSSION

People derive expectations about robot behavior by ob-
serving robot trajectories. Our work serves as a basis for
enabling robots to use their trajectories to convey information
about reward functions. In this work, we introduce the
concept of critical points - inflection points and compromise
points. Using these, we develop a method for systematically
generating trajectories that possess the critical points we
specify. We then test how trajectories with varying com-
binations of critical points affect the human understanding
of robot reward functions. We show that inflection points
can have different effects on human understanding depend-
ing on whether a robot’s reward function has particular
terrain feature preferences or not. Specifically, when there
is a preference for terrain features, adding inflection points
improves human understanding, while when there is no
preference, adding inflection points hinders understanding.
In both cases, increasing the number of compromise points
decreases human understanding of the robot’s preferences.

Interestingly, our results showed that the subjective con-
fidence did not increase with fewer compromise points as
we expected. Future work is needed to understand why this
happens. One possible reason is that if participants never saw
the robot navigate over a rock, they would not be confident
about what would happen if it had to navigate over a rock.

Additionally, our results showed that there was a signifi-
cant effect of one pair of inflection points but no benefit to
the second pair of inflection points suggesting that there is
a “law of diminishing returns” in information conveyed by
inflections. Because we only investigated two terrain types,
one pair of inflection points is all that is necessary to indicate
which terrain type is preferred. More work is needed to
investigate whether our finding holds for more complex envi-
ronments. For example, while we believe that one inflection
point is needed to show relative preference between pairs of
features, it is unclear whether the complexity of the path will
overwhelm an observer rather than help them.

Finally, our study was performed in an online study
and not on a real robot. We acknowledge that it may be
difficult to modify real environments for optimal trajectories
to include critical points. In environments where a robot

1363



cannot demonstrate its reward function, it may be possible to
display a trajectory visualization as a method of transparency
such as in [35]. This could be a simulated environment with
a trajectory (such as those we generated) to efficiently teach
an observer about its preferences. Another option may be to
demonstrate a non-optimal path that has more critical points.
Future work is needed to understand whether our findings
translate to real robots in real environments, and also whether
other methods of demonstration are effective.
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IX. APPENDIX

Optimality Ratio Preference Range Subjective Confidence

0 Comp 4 Comp 0 Comp 4 Comp 0 Comp 4 Comp

0 Infl 0.62(0.24) 0.51(0.18) 1530(391) 1271(324) 2.81(0.97) 3.17(1.07)

2 Infl 0.81(0.18) 0.62(0.21) 1860(265) 1544(298) 3.27(0.92) 3.56(0.96)

4 Infl 0.80(0.19) 0.72(0.19) 1861(286) 1626(304) 3.34(1.04) 3.57(0.89)

TABLE I: Mean (std. dev.) optimality ratio, preference range, and subjective
confidence for preference maps

0 Compromise 4 Compromise

Same Different Same Different

0 Inflection 0.99 (0.04) 0.99 (0.04) 0.95 (0.08) 0.95 (0.08)

2 Inflection 0.95 (0.06) 0.95 (0.07) 0.91 (0.10) 0.87 (0.10)

4 Inflection 0.95 (0.07) 0.93 (0.08) 0.86 (0.11) 0.83 (0.09)

TABLE II: Mean (std. dev.) optimality ratio for no preference maps

0 Compromise 4 Compromise

Same Different Same Different

0 Inflection 1434 (563) 1434 (563) 1918 (194) 1918 (194)

2 Inflection 1716 (395) 1572 (482) 989 (655) 866 (485)

4 Inflection 1738 (351) 1671 (436) 797 (485) 658 (428)

TABLE III: Mean (std. dev.) preference range for no preference maps

0 Compromise 4 Compromise

Same Different Same Different

0 Inflection 4.24 (0.84) 4.24 (0.84) 3.50 (1.10) 3.50 (1.10)

2 Inflection 3.40 (1.04) 3.59 (0.99) 3.26 (1.13) 3.27 (0.97)

4 Inflection 3.24 (1.13) 3.40 (1.09) 3.37 (1.09) 3.31 (1.06)

TABLE IV: Mean (std. dev.) subjective confidence for no preference maps
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